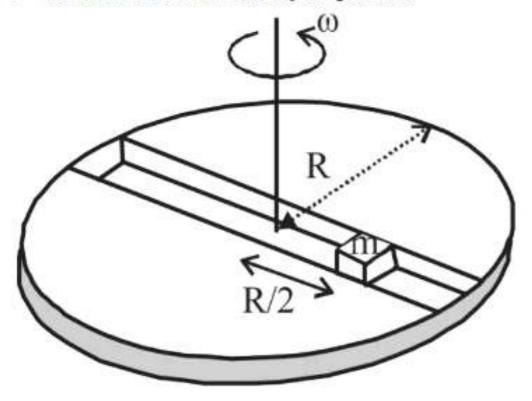
A frame of reference that is accelerated with respect to an inertial frame of reference is called a non-inertial frame of reference. A coordinate system fixed on a circular disc rotating about a fixed axis with a constant angular velocity ω is an example of non=inertial frame of reference. The relationship between the force \vec{F}_{rot} experienced by a particle of mass m moving on the rotating disc and the force \vec{F}_{rot} experienced by the particle in an inertial frame of reference is $\vec{F}_{rot} = \vec{F}_{in} + 2m(\vec{v}_{rot} \times \vec{\omega}) + m(\vec{\omega} \times \vec{r}) \times \vec{\omega}$. Where \vec{v}_{rot} is the velocity of the particle in the rotating frame of reference and \vec{r} is the position vector of the particle with respect to the centre of the disc. Now consider a smooth slot along a diameter for a disc of radius R rotating counterclockwise with a constant angular speed ω about its vertical axis through its center. We assign a coordinate system with the origin at the center of the disc, the x-axis along the slot, the y-axis perpendicular to the slot and the z-axis along the rotation axis $(\vec{\omega} = \omega \hat{k})$. A small block of mass m is gently placed in the slot at $\vec{r}(R/2)\hat{i}$ at t=0 and is constrained to move only along the slot.



The distance r of the block at time is

A. (a)
$$\frac{R}{4}\left(e^{\omega t}+e^{-\omega t}\right)$$
B. (b) $\frac{R}{2}\cos\omega t$
C. (c) $\frac{R}{4}\left(e^{2\omega t}+e^{-2\omega t}\right)$
D. (d) $\frac{R}{2}\cos2\omega t$

Correct Answer - A

Force on the block along slat
$$=mr\omega^2=mvrac{dv}{dr}$$
 $\therefore \int_o^v V dv = \int_{R/2}^r \omega^2 r dr \Rightarrow V = \omega \sqrt{r^2-rac{R^2}{4}} = rac{dr}{dt}$

$$\therefore \int_{R/4}^{r} \frac{dr}{\sqrt{r^2 - \frac{R^2}{4}}} = \int_{o}^{t} \omega dt$$

On solving we get

$$r + \sqrt{r^2 - rac{R^2}{4}} = rac{R}{2} e^{wt}$$
 or $r^2 - rac{R^2}{4} = rac{R^2}{4} e^{2wt} + r^2 - 2rrac{R}{2} e^{wt}$ $\therefore r = rac{R}{4} \left(e^{wt} + e^{-wt}\right)$